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We present experimental results on the extraction of oil trapped in the confined
region of a wedge. Upon addition of a more wetting liquid, we observe that oil
fingers develop into this extracting liquid. The fingers eventually pinch off and form
droplets that are driven away from the apex of the wedge by surface tension along
the gradient of confinement. During an experiment, we observe that the size of the
expelled oil droplets decreases as the unstable front recedes towards the wedge. We
show how this size can be predicted from a linear stability analysis reminiscent of the
classical Saffman—Taylor instability. However, the standard balance of capillary and
bulk viscous dissipation does not account for the dynamics found in our experiments,
leaving as an open question the detailed theoretical description of the instability.
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1. Introduction

The energy cost & associated with the creation of boundaries between two phases
may be written as
E=yS, (1.1)

where y is the interfacial tension, characteristic of the materials in contact, and S is
the surface area of the interface. A physical system thus evolves under the influence
of interfacial energy if provided with the possibility to explore gradients in y or S. It
then tends to favour the development of interfaces with low surface tension, and to
reduce the area of interfaces.

This very general statement is illustrated by the spontaneous capillary motion
observed in many systems. Drops deposited on substrates with gradients of surface
energy tend to move spontaneously towards the most wettable regions (Greenspan
1978; Brochard 1989; Chaudhury & Whitesides 1992; Weislogel 1997; Ichimura,
Oh & Nakagawa 2000). Conversely, drops deposited on an initially homogeneous
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plate may spontaneously move if they contain surface-active reactants that modify
the surface energy of the plate. These molecules generate a gradient of wettability
that enables the droplets to spontaneously break symmetry and self-propel over
long distances (Bain, Burnett-Hall & Montgomerie 1994; Domingues dos Santos &
Ondarguhu 1995). Photoswitchable surfactants in solution may also generate similar
effects (Chevallier et al. 2013). Mazouchi & Homsy (2000) exploited thermal variation
of liquid surface tension to generate the motion of bubbles in tubes. Surface tension
gradients at a fluid interface also induce flows along the surface, and may drive
the motion of a small toy boats (Kohira, Hayashima & Nagayama 2001) or propel
water-standing insects (Bush & Hu 2006). In a more festive prospect, Marangoni
flows induced by the evaporation of ethanol lead to the ‘tears’ observed in a glass of
wine (Hosoi & Bush 2001).

Geometry gradients are also able to generate the spontaneous motion of liquids. In
his seminal work, Hauksbee (1710) demonstrated how a drop of orange oil inserted in
a narrow wedge spontaneously moves towards the most confined part of the wedge.
In the early 20th century, Bouasse (1924) suggested that a slug of wetting liquid
inserted into a tapered capillary tube would similarly move towards the tip of the
cone. Conversely, Lorenceau & Quéré (2004) showed that a drop of wetting oil
deposited on a conical fibre spontaneously moves away from the tip. More recently,
gradients of confinement have been proposed as a solution to propel droplets in
narrow channels (Renvoisé et al. 2009) or as an elegant tool to produce and guide
droplets in microfluidic devices (Dangla, Kayi & Baroud 2013), while Reyssat (2014)
analysed the dynamics of drops and bubbles confined in wedges.

From an applied point of view, the mechanisms of detergency crucially rely on the
combination of chemical and geometrical heterogeneities in a system. They are of
practical importance in the petroleum industry, where surfactant solutions are known
to promote the extraction of crude oil from porous rocks in tertiary recovery stages
(Morrow & Mason 2001). The complexity of actual geological material hinders a
detailed understanding of the extraction, calling for studies on well-controlled model
systems. Bico & Quéré (2002) showed in the most simplified geometry of a porous
medium, a uniform capillary tube, how liquid trains composed of liquids of different
surface tension may move spontaneously. More recently, Piroird, Clanet & Quéré
(2011a) put in evidence the role of chemical and geometrical heterogeneities in the
extraction of an oil slug from a capillary tube. Oil is first driven to one extremity of
the tube by Marangoni flows induced by surfactants. It is then expelled from the tube
by the high Laplace pressure resulting from confinement by the tube walls (Piroird,
Clanet & Quéré 2011b).

In the present paper, we consider a volume of wetting silicone oil trapped along
the apex of a sharp wedge formed by two glass plates. A competing soap solution
inserted in the wedge is shown to replace and extract the oil. The exchange process
leads to the production of confined oil droplets whose size is determined by the
geometry of the experiment. Following earlier works on interfacial instabilities in
confined geometries (Saffman & Taylor 1958; Al-Housseiny, Tsai & Stone 2012), we
develop a simple model to explain the size of the extracted droplets and the dynamics
of this instability.

2. Experimental set-up

The experimental set-up consists of a slightly tapered and quasihorizontal
Hele-Shaw cell, as sketched in figure 1(a). Two glass plates of thickness 3 mm, length
20 cm and width 10 cm face each other and are separated along one edge by a spacer
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FIGURE 1. (Colour online) Geometry of the experimental set-up: (a) linear wedge,
(b) parabolic gap.

of millimetric thickness. The angle o of the wedge can be tuned between 0.1° and 7°,
with an accuracy of 0.1°. The thickness & of the gap between the plates is thus of
the form h(x) = ax, where x is the distance to the apex of the wedge. Before forming
the wedge, a small amount of a surfactant solution is spread on the glass plates. This
thin film of thickness of order 1 wm quickly evaporates, leaving a surfactant layer
on the walls. The solution is made with 5 ml of a commercial dishwashing liquid
(Paic Citron®, from Colgate-Palmolive Company) diluted in 100 ml of deionized
water and methylene blue to enhance the optical contrast. Using a syringe needle,
we insert a drop of silicone oil that forms a coin-shaped capillary bridge between
the pre-wetted plates. The viscosity 7, of the oil ranges from 4.5 to 12200 mPa s.
The viscosity n, of the aqueous phase is changed from 1 to 600 mPa s by adding
fructose to water. The oil migrates towards the apex of the wedge since it wets the
surface of the glass. Once the oil is trapped in the wedge, we introduce a large
amount of surfactant solution between the plates. The solution also migrates towards
the apex of the wedge, and forms with the oil phase an interface initially parallel to
the edge. The interfacial tension of the oil/surfactant solution y, measured using the
pendant drop and spinning drop methods, ranges from 2.340.2 to 3.24+0.2 mN m™!
depending on the oil. A white LED backlighting panel is placed under the plates and
the system is imaged from above using a digital camera. We observe (figure 2(a)
and supplementary movie available at http://dx.doi.org/10.1017/jfm.2016.1) that the
oil/water interface destabilizes within a few minutes. The interface becomes wavy,
which progressively leads to the formation of oil droplets. These droplets are in a
non-wetting situation and are eventually ejected towards less confined regions. As
depicted in figure 2(a), the oil and water phases have switched positions after a few
minutes. The oil phase is thus extracted and may be recovered out of the device
using, for instance, a transverse flow.

We also perform experiments in cells with an axisymmetric geometry to avoid
boundary effects. We use the gap between a spherical glass lens and a flat glass
plate, as described in figure 1(b). The radius of curvature p of the curved surface
ranges from 7 to 29 cm. The gap profiles are then parabolic, h(x) =x*/2p, where x is
the distance to the contact point between the curved and flat surfaces. As in the case
of the experiments conducted in a wedge geometry, we first pre-wet the cell with the
surfactant solution. We then introduce a given volume of silicone oil, which settles
around the centre of the cell, where the thickness is minimal. We finally introduce
the surfactant solution. Again, oil is extracted in the form of flat circular droplets that
migrate away from the centre, driven by the gradient of confinement (see figure 2b).

As a first step towards understanding the role of physical chemistry in this problem,
we have carried out additional experiments with other trapped/extracting liquid pairs.
The influence of the surfactant was tested by extracting silicone oil with sodium
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FIGURE 2. (Colour online) (a) Top view of a set-up with a straight wedge between two
glass plates (see also supplementary movie). The apex of the wedge is along the left side
of the pictures. The clear liquid initially located along the edge of the wedge is silicone
oil of viscosity 1, = 50.2 mPa s. The soap solution is dyed with methylene blue. The
oil/water interface destabilizes and oil fingers grow into the water phase. The fingers pinch
off and form oil droplets that move away, driven by the gradient in confinement. The
inversion of the oil and water phases takes approximately 10 min. (b) Top view of a set-up
with a parabolic gap between a glass plate and a spherical lens. Initially (), the oil phase
is trapped close to the plane/sphere contact point. When introduced, the surfactant solution
forms an annulus around the oil at the centre of the cell. As in the case of a straight
wedge, the oil phase is extracted and driven away from the centre by the gradient of
confinement.

dodecyl sulphate (SDS) solutions. To avoid using surfactant, we also carried out
experiments with pure liquids, and extracted a fluorinated oil (perfluorodecalin) with
ethanol.

3. Size of the extracted oil droplets
3.1. Experimental results

Upon introduction of the extracting solution, the oil/water interface becomes wavy
and oil fingers develop in the water-filled region, as shown in figure 2. These fingers
progressively pinch off in the form of flattened oil droplets lubricated by a thin water
layer. The droplets subsequently migrate away from the tip of the wedge driven by
the gradient of confinement. As oil drops are extracted, the boundary between the
displacing water and the remaining trapped oil recedes towards the confined region.
We observe that the fingers forming closer to the apex of the wedge are smaller
than those developing in less confined regions. In early stages of the instability, the
oil/water interface sometimes exhibits sinusoidal spatial oscillations, from which we
define the dominant wavelength A1 of the instability, as shown in figure 3(a). In
most experiments however, the deformations of the interface are less regular (as it
is the case with any instability when the wave mode is not imposed). Then, as a
characteristic size, we choose to measure the width w of fingers just before the
necking process that leads to the pinch off and the release of the drops (figure 3b).
In figure 4(a), we plot the width of the finger w as a function of the position x,
where oil drops are formed in the case of a straight wedge. The width w is known to
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FIGURE 3. (Colour online) (a) Depending on initial defects, the oil/water interface
sometimes exhibits a regular sinusoidal deformation. In this case, we define the wavelength
A of the instability. (b) In most experiments, the pattern is not periodic. Here, we show
successive snapshots of an isolated oil finger growing into the water phase and starting to
pinch off. For such irregular patterns, a second characteristic size can be defined as the
width w of the finger at the beginning of the necking and detachment process.
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FIGURE 4. (Colour online) (@) The width w of the growing oil fingers as a function of the
position of their formation x,. The symbols correspond to different values of the wedge
angle «o: 0.25° (O), 1.15° (x), 3.0° (@) and 6.8° (+). The solid lines are linear fits of the
data for each value of «. (b) The slope s of the line w(xy) as a function of the wedge
angle o. The equation of the full line is s = 0.25a!/?, where « is expressed in degrees.
The error bars represent the uncertainty in s while fitting.

an accuracy of 300 wm, and the uncertainty in x, ranges from 2 % to 10 % depending
on «. For a given angle « of the wedge, w increases linearly with x;, which confirms
our first qualitative observations. The slope s =dw/dx, of the line w(xy) is found to
increase with «. As shown in figure 4(b), the variation of s with « is well described
by a square root law: s~ 0.250'/ (where o is expressed in degrees) within the range
of explored angles.

3.2. Mode selection

We first aim at giving a physical explanation of the observed results. The oil/water
interface is initially flat and located at position xyo. We consider a perturbation of the
interface profile of wavelength A and peak-to-peak amplitude §(¢). We describe the tip
of the corrugated interface profile by f(xo, ¥), as sketched in figure 5:

f(xO,y)=xO+¥cos (2—?> (3.1)
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FIGURE 5. Oil/water interfacial harmonic perturbation of wavelength A and amplitude §(¢)
evolving with time. The oil/water interface is located at an average distance x, from the
apex of the wedge.

Deformations give rise to inhomogeneities in the Laplace pressure jump across
the interface, which are responsible for the flow of the oil and water phases. In our
experiments, the oil is generally much more viscous than the water (,/n,, = 5). As a
consequence, the pressure in the water is almost constant, and most of the variations
occur in the oil phase. Denoting by p,, the pressure in the water, the pressure p, in
the oil is given by the Laplace law, expressed as follows in a Hele-Shaw geometry:

2 T,
Po=pwty (h(x) el @)) : (32
The two contributions to the pressure jump correspond to the interface being curved in
the Oxz and Oxy planes respectively. The 7/4 prefactor accounts for a subtle coupling
between the two curvatures and has been described in detail by Park & Homsy (1984).

Along the interface, in the Oxy plane, the characteristic curvature of the interface
% ~ f”(y) undergoes variations of order A%} ~ §/A>. This curvature results in a
pressure jump at the oil/water interface, which tends to drive fluid back to the flat
interface configuration. Destabilization arises from the interfacial curvature in the Oxz
plane normal to the plates and the wedge apex, which is of order 6, ~ 1/h(xy). The
curvature difference between crests and troughs is thus of order A%, ~ 81/ (xy)/h(xo)>.
Combining both contributions, the global pressure difference between a trough and a

crest is approximately
Hx) 1 )

h(x)? A2

As a consequence, the interface is unstable to all corrugations, such that AP > 0.
Perturbations of wavelength larger than A, ~ h(xo)/+/h (xo) are thus amplified.

A pressure gradient of order AP/A drives a flow at velocity v ~ § in a region
of typical size A around the mean position x, of the interface. Considering that the
velocity gradients are mostly normal to the walls, the Stokes equation describing the
flow can thus be written dimensionally in the following way:

s 5 < (o) 1) 3.4
Thi? Y ke~ ) 3-4)

AP~y ( (3.3)

where n=rn, +n,. Looking for solutions of the form §(#) =Aexp (c¢) gives the growth
rate o (1) of the interfacial instability:

Yy (W (x)  h(x)?
o(d) 77( P — B > 3.5
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FIGURE 6. (Colour online) (@) The measured wavelength A of the instability in a linear
confinement is plotted as a function of the most unstable wavelength A* predicted by
(3.9). The symbols correspond different pairs of trapped/extracting liquids: silicone oil/Paic
Citron® solution (@), silicone 0il/SDS solution (W) and perfluorodecalin/ethanol (A). The
data are well described by the line of equation A= A*. (b) The width w of oil fingers
plotted as a function of the most unstable wavelength A* as predicted by (3.9) and (3.10)
in both linear and parabolic confinements. The open circles (O) correspond to experiments
in a parabolic gap. The experimental data for both geometries are consistent with a linear
law w2~ 0.282* (full line).

Following the more general derivation of Saffman & Taylor (1958) and Al-Housseiny
et al. (2012), we can deduce a precise expression for the growth rate with prefactors:

14 <7th’(x0) _ Tt4/1()50)2>

o) = ; 1 3E (3.6)

The smallest unstable wavelength A, is thus given by

BN\ hxo)
*C:(z) TG’ 59

while the fastest unstable mode can be expressed as

*=+/31,. (3.8)

In the configurations we have realized experimentally, the gap profiles A(x) are linear
or parabolic, h(x) =ax or h(x) =x*/2p. The expression for 1* is

33\ 2
/l*=<2> Xo/ot = 6.82x0/ (3.9)

33\ /3 x;
A= () 034142 (3.10)
8 P P
respectively.

In figure 6(a), we plot the experimentally measured wavelength A of the instability
as a function of A%, for straight wedges of various angles «, different values of x, and

or
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silicone oils of viscosity 7, ranging from 4.5 to 970 mPa s. We observe that the data
are in good agreement with the prediction of (3.9) without any adjustable parameter.
Additional data corresponding to silicone 0il/SDS solution and perfluorodecalin/ethanol
also follow the same trend, showing that the observed size selection process does
not depend significantly on the type or even on the presence of surfactant. In most
cases, however, it was not possible to observe an interface oscillating with a single
wavelength, which is why the data points in figure 6(a) are relatively scarce. Using
the width w of a pinching finger as a characteristic size, we could collect more data,
which are displayed in figure 6(b); these data also include experiments in parabolic
wedges with various radii of curvature p. Again, we observe that all of the data
superimpose on a line of equation w =~ 0.281*, indicating that the first stages of the
instability determine how w scales with the experimental parameters. The numerical
coefficient is probably determined by the details of the instability in the later nonlinear
stage (8 = 1). The data nevertheless exhibit some scattering, which may be due to
hydrodynamic interactions between neighbouring fingers in nonlinear stages of the
instability. For instance, we sometimes observe that a finger starts to grow but is
finally absorbed by one of its closest neighbours, which results in a larger drop.

4. Dynamics of the instability
4.1. Experimental results

Numerous studies in the literature on viscous fingering compare the experimentally
observed shapes of fingers with theoretical and numerical predictions, relying on
refined versions of initial models by Saffman & Taylor (1958). However, very few
authors report direct measurements of the growth rates of the instability. The work of
Park, Gorell & Homsy (1984a) (see also the corrigendum of Park, Gorell & Homsy
(1984b)) provides growth rates for a restricted range of fluid viscosities, showing
discrepancies with a model adapted from Saffman & Taylor (1958).

Here, we propose to characterize the dynamics of the instability with two time
scales. A first time corresponds to the growing time of a finger developing at a
given distance xo from the apex of the wedge (we focus on the case of a straight
wedge, h(x) = ax). As shown in figure 7, the amplitude of the instability §(¢) grows
exponentially as long as the shape of the finger is not fully developed. Within the
limit § < A, the amplitude of the finger is thus given by &(f) =A exp(t/ts), where the
characteristic growth time 7, depends on the fluid viscosities, interfacial tension and
initial position xy. In figure 8(a) (filled blue symbols), we plot 7, as a function of the
oil viscosity n, for a wedge of angle @ =0.95° and an interface at an initial position
Xo=20.54+2.5 mm. As 7, varies from 4.5 to 12200 mPa s, 7y increases from 10 s to
approximately 1 h. Experimentally, 7; is found to increase as a power law, t; o< 2.

Another relevant time scale is the extraction time of the whole volume of oil trapped
inside the wedge. This global time 7, corresponds to the time after water injection at
which all of the trapped oil is set into motion in the form of droplets. Figure 8(a)
(open red symbols) also shows the variation of t, versus 1,, the other parameters
being the same as for the measurement of 7,. Again, we observe that 7, increases
with a power law, 7, oc n°7°. While the exponent is almost the same as for the first
measurement, the prefactor is larger by a factor of order 10.

We also explore the role of the viscosity n, of the extracting phase by using
fructose solutions of various concentrations as the extracting phase (n, ranges from
1 to approximately 600 mPa s). In figure 8(b), we show the evolution of 7, and 7,
as a function of n,. The oil viscosity is fixed in these experiments, 1, = 500 mPa s.
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FIGURE 7. (Colour online) The amplitude §(¢) represents the length of a growing finger
evolving in time. The amplitude & increases exponentially with time in the first stages
of the development of the finger, which provides a characteristic growing time 7, as the
inverse growth rate of §. The arrow indicates the time at which the finger width w is
measured.
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FIGURE 8. (Colour online) (a) Characteristic oil extraction time scales plotted as a
function of the oil viscosity n,. Here, 7; (®) is the inverse growth rate of the dominant
wavelength for an interface initially at a distance xo =20.5 2.5 mm from the apex of a
wedge of angle o =0.95°%; 7, (O) corresponds to the time at which all of the trapped oil
is set into motion. Both sets of data follow the same scaling trend (z; ~ n°"!, 7, ~ n°7),
although with different prefactors. The error bars represent the standard deviation of the
distribution of t for a given 7,. (b) Characteristic oil extraction time scales plotted as
a function of the extracting liquid viscosity 7,. Here, 7, (®) is the inverse growth rate
of the dominant wavelength for an interface initially at a distance xo = 20.5 £ 2.5 mm
from the apex of a wedge of angle o =0.95°; 7, (O) corresponds to the time at which
all of the trapped oil is set into motion. As 5, increases by three orders of magnitude,
the extraction times gain a factor of approximately 30.
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FIGURE 9. (Colour online) The time scales 7y and 7, as a function of n =7, + n, for
a subset of data with a fixed oil viscosity 7, =500 mPa s. The characteristic time scales
are clearly not proportional to 1, showing that the classical model for viscous fingering
cannot describe the dynamics of growing fingers in the current situation.

As expected, the fingers grow faster for smaller values of 7,. As 7, increases by three
orders of magnitude, the extraction times indeed gain a factor of approximately 30.
However, the relationship is apparently not a simple scaling law here.

4.2. Discussion

Inputting the wavelength A* into (3.6) gives the corresponding growth rate:

8 172 Zh/(xo)3/2
24371 n hixp)

For a straight wedge, h(x) = ax, the time scale t* =1/0* is thus given by

o =0(") = ( 4.1)

. 2437\ x 42)
T =|— ——. .
8 y Ja

As a consequence, one would thus expect the characteristic time scales of the
instability to be proportional to n =7, + n,. The data displayed in figure 8(a), for
which n ~ n,, do not agree well with this prediction. Figure 9 shows the same
data as figure 8(b) plotted as a function of 5 instead of 7,. The discrepancy with
the theoretical prediction is even more striking, and the experimental data clearly
disagree with the conclusion that z;, 7, oc 7.

We now discuss some possible reasons for this discrepancy. We suspect that
dynamic wetting phenomena may play an important role here. As the water phase
wets the cell preferentially, a thin film of water is deposited between the oil and the
glass walls as the fingers grow. Hodges, Jensen & Rallison (2004) studied theoretically
the effects of dynamic wetting on the motion of a drop translating in a cylindrical
tube filled with another immiscible viscous liquid. The end caps and main body of
the drop couple to the lubricating film of the outer fluid, giving rise to a number
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of asymptotic regimes that strongly depend on the viscosity ratio of the two liquids,
the drop size and the capillary numbers. The analysis of Hodges et al. (2004) in
the case of rotational symmetry remains valid, but other effects should add up in a
Hele-Shaw geometry. Recently, Huerre er al. (2015) have shown that the dynamics
of drops in microfluidic devices is strongly influenced by the lubrication films that
separate the drop from the walls. The variety of possible dissipation mechanisms
makes it difficult to derive an analytical expression for the temporal evolution of
the amplitude of fingering instabilities. It is still a topic of debate, and recent works
discussing the complexity of patterns obtained in the radial Saffman—Taylor instability
show that the resulting dynamics is far from being fully understood (Bischofberger,
Ramachandran & Nagel 2014; Jackson et al. 2015). Here, we discuss some possible
physical mechanisms involved at the interface between the two fluids.

Viscous friction associated with moving contact lines has been widely documented
in the past. In particular, the work of Landau & Levich (1942) and Bretherton (1961),
recently revisited by Cantat (2013), enables one to predict the viscous force associated
with a contact line moving and depositing a thin film of the displaced liquid (usually
water in the present experiment). The force per unit length of the moving meniscus
scales as y Ca??, where Ca, =n,V/y and V is the interface velocity. This prediction
is, in particular, important in the dynamics of foams sliding against a wall (Cantat
2013). It also enables one to account for the motion of a drop bridging the walls of a
Hele-Shaw cell and flowing under its own weight (Reyssat 2014). Equivalently, Park &
Homsy (1984) have shown that in the case of a non-wetting fluid displacing a wetting
phase in a Hele-Shaw cell, dynamic wetting modifies the interfacial pressure jump by
adding a term of order (y/h)Ca??. Following the steps of Park & Homsy (1984),
a number of authors (Schwartz 1986; Reinelt 1987; Maxworthy 1989; Jackson et al.
2015) have included contact line dissipation in this manner, and have concluded that
accounting for dynamic wetting gives better predictions of the fingering patterns in
the Saffman and Taylor instability. Implementing this additional term into (3.3) leads
to a modified expression for the driving pressure difference:

Hg) 1 y ()"
AP~ ya <h(xo)2_/lz)_8h(xo) (y) ’ 3

where ¢ is a constant of order 1. Taking into account the viscosities of both fluids
may modify this term. Nevertheless, Schwartz, Princen & Kiss (1986) demonstrated
that the viscosity ratio between the two fluids only slightly alters ¢ by a factor of at
most 1.6. The evolution equation for the amplitude of the instability thus becomes

5 (”(x”) - 1) Ah(xo) ~ 1

h(xg)?2 A2 h(x)?

i\ 23
2 nw6

A“h(xg) + ey . 4.4)
I4

In (4.4), the velocity appears both in the product nd of the usual Poiseuille term and

as 1,6 in the nonlinear contact line friction. One thus cannot expect characteristic

growth times to simply scale linearly with n = n, + n, in general. Interfacial

dissipation should initially dominate until the velocity reaches a critical value defined

by 2 3
Q 3k V Nw h)

S~ = | — - . 4.5

n (n) <ﬂ @

In our experiments, n,/n ranges from 107* to 1, h/A1 ~ Ja ~ 107!, so that
8* < 10~*y/n. In most experiments, the measured velocities are such that the
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criterion given by (4.5) is satisfied before § reaches the local thickness h(xy) of
the cell. Meniscus friction is thus in most cases negligible.

Once deposited by the moving meniscus, the water film also modifies the boundary
condition seen by the oil finger at the walls of the Hele-Shaw cell: the flow is no
longer localized in the oil phase, but some degree of slippage is now allowed and
the water film is also under shear. Considering an oil finger of thickness % separated
from the walls by water films of thickness e, localization of the flow within the most
mobile phase depends on the ratio r = hn,/en,. Given that e ~hCa?/?, r is found to
range from 0.1 to 100 in our experiments, indicating that water films may efficiently
lubricate oil fingers. Such lubricating films have been shown to play a dominant role
in the motion of oil slugs self-propelling in capillary tubes (Bico & Quéré 2002).
As the oil becomes very viscous, it essentially flows as a solid plug lubricated by
a film of low viscosity. While such an effect may be important, we expect it to be
weaker in our two-dimensional system where flows have an extensional component.
Even for perfectly lubricated flows (r < 1), velocity gradients in the plane of the plates
remain and should then contribute. Associated viscous forces (per unit volume) are of
order 1,8/4%. This additional dissipative term involves only the oil viscosity, showing
one more time that one should probably not expect a simple linear link between the
characteristic times of the instability and n = 5, + n,. Lubrication by water films
qualitatively explains the trends presented in figures 8 and 9. For a fixed viscosity
of the water phase (figure 8a), T increases sublinearly with 7, in agreement with the
stronger effect of lubrication as the viscosity ratio 1,/n,, increases. In the case of fixed
n, (figure 9), as 7, increases, T grows more quickly than 7 as lubrication becomes
less efficient.

Additional complexity also emerges from the physicochemical properties of the
interface. As shown by Cantat (2013), both the numerical coefficient and the exponent
in contact line dissipation depend on the interfacial rheology, i.e. on the type of
surfactant used. More generally, the motion of the drop and bubbles is known to be
affected by the presence of surface-active molecules (Levich 1962). Since surfactant
molecules from the interface are advected by the flow around the drop, the interface
freshly created at the front of the drop is depleted in surfactant in comparison to
the rear of the drop where surface-active molecules accumulate. As a consequence,
surface stresses develop and generate Marangoni flows which affect the primary
flow. Such surface tension gradients oppose and reduce the rising velocity of gas
bubbles ascending in a surfactant solution, as shown by Ybert & di Meglio (2000).
Air bubbles rising in inclined Hele-Shaw cells flooded with surfactant solutions also
develop an anomalous wake and tend to rise more slowly than in pure water (Bush
1997). A similar effect may thus operate in our case. The crests and troughs of
the interface probably have different surfactant interfacial concentrations, giving rise
to Marangoni stresses which may modify the growth of oil fingers. Nevertheless,
experiments conducted with different surfactants, or even without surfactant, show
that the size of the produced droplets is not significantly altered, which suggests that
this effect should not be dominant in our experiments.

Finally, it may seem surprising that the minimal model recalled above, although
unable to faithfully describe the dynamics of the instability, predicts the dominant
wavelength accurately. As the instability develops, oil fingers invade the initially
water-filled region and become gradually lubricated by the water films deposited by
the moving interface. As shown in figure 10, in the early stages, within one finger,
the surface of the non-lubricated moving oil is of order A*2. while the lubricated
fraction of the finger covers an area A*§. The dominant wavelength may be selected
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Oil 1 /' Lubricated regions

FIGURE 10. (Colour online) Qualitative sketch illustrating the regions where oil is
lubricated by water films. The main directions of the oil flow in the plane of the plates are
indicated by the dashed arrows, showing that in-plane velocity gradients may contribute
to viscous dissipation in the bulk of the oil phase when lubrication is efficient.

in these first moments where the resisting forces originate mostly from the classical
Poiseuille flow in both phases; A* then remains locked as the instability develops
further. Lubrication by water films should mainly only affect these later stages, where
it may accelerate the growth of fingers whose size is already selected.

5. Conclusion

We have explored experimentally the exchange mechanism of two competing fluids
in wedges. The extraction of the first introduced phase (mainly silicone oil in the
present study) by a more wetting liquid results from a capillary-driven instability
due to antagonist principal curvatures of the oil/water interface, which is reminiscent
of the classical Rayleigh—Plateau instability (de Gennes, Brochard-Wyart & Quéré
2004). This instability produces oil fingers that pinch off into flat droplets which
are eventually displaced to the regions of low confinement. The size of the droplets
depends on the value of the local thickness and its gradient. In addition, we have
also measured the dynamics of the instability for wide viscosity ranges of both
phases, and have shown discrepancies with the simplest model. We have discussed
possible dissipation mechanisms, and believe that they may be more complex than
those discussed in the literature on viscous fingering. We suspect dynamic wetting
effects to play an important role in the characteristic time scale of the instability, and
we hope that our experimental study will motivate further theoretical or numerical
exploration of the problem.

Physical chemistry issues are also certainly crucial and a source of many open
questions. It could be interesting to probe interfacial effects by changing the type of
surfactant employed, the hydrophilic—lipophilic balance or the mobility. Oil extraction
may even occur in some systems in the absence of surface-active molecules. More
generally, exploration of the behaviour of complex fluids such as polymer solutions,
suspensions, foams or emulsions may be relevant to the petroleum industry. The
configuration we investigated only involves a total wetting of the water phase. Is oil
extraction still spontaneous if water only partially wets the walls, as frequently occurs
in oil fields? If contact angle hysteresis impedes the motion, could the instability be
triggered by mechanically actuating the walls of the cell as the ‘capillary ratchet’
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described by Prakash, Quéré & Bush (2008)? The plates used in our experiments
were smooth; it would thus be interesting to investigate whether the introduction of
some roughness would prevent or amplify the liquid exchange.
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