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We experimentally investigate the sedimentation of a non-wetting drop confined
between two parallel walls. The whole system is immersed in a bath of liquid of low
viscosity and a lubricating film may be dynamically formed between the drop and
the walls of the cell. Depending on the thickness of the film and on the viscosity
ratio between the droplet and the surrounding liquid, viscous dissipation localizes
either in the lubrication layer or in the bulk of the drop. The velocity of the droplet
is non-trivial as the thickness of the lubricating layer may depend on the interplay
between interfacial tension and viscous dissipation. Interestingly, thin films whose
nanometric thickness is set by long range intermolecular interactions may lubricate
efficiently the motion of highly viscous droplets. We derive asymptotic models that
successfully capture the settling velocity of the drop in the different regimes observed
experimentally. The effect of partial wetting is finally illustrated by a sharp increase
of the velocity of the drops that we attribute to a wetting transition.

Key words: drops, Hele-Shaw flows, thin films

1. Introduction

Droplet dynamics in confined media is a major issue for petroleum engineering as
oil extraction commonly involves the displacement of microdroplets through pores of
the same scale. The formation of such emulsions stems from various interfacial
instabilities such as viscous fingering (Saffman & Taylor 1958; Homsy 1987),
splitting in the porous network (Jung et al. 2016), snap-off (Gauglitz & Radke 1990;
Dangla, Kayi & Baroud 2013) or capillary instabilities in gradients of confinement
(Al-Housseiny, Tsai & Stone 2012; Pihler-Puzovic et al. 2012; Dias & Miranda
2013; Keiser et al. 2016). The resulting multiphase flows generally involve large
deformations of the interfaces (Zinchenko & Davis 2017), which in turn modify the
flow dynamics and make theoretical predictions of pressure losses complex. Droplet
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dynamics is however not limited to multiphase flows in porous media. Understanding
the motion of a droplet in a confined environment is for instance crucial for digital
microfluidics systems, which are currently blooming (Baroud, Gallaire & Dangla
2010; Seemann et al. 2012). Such confined droplets may even constitute a model
system to describe the motion of biological cells in narrow environments (Zhou, Yue
& Feng 2007; Preira et al. 2013).

Numerous studies have been dedicated to model systems consisting of isolated
droplets or bubbles moving in a uniform channel (Baroud et al. 2010). One of
the fundamental questions concerns the peculiar viscous dissipation in the vicinity
of menisci and contact lines (Snoeijer & Andreotti 2013). Pioneering advances in
the field were achieved by Landau & Levich (1942) and Derjaguin (1993) who
first described the coating of a plate withdrawn from a bath of wetting liquid.
This mechanism is dictated by a balance of viscous stresses and surface tension.
Bretherton (1961) adapted this problem to the case of a long bubble moving in a
capillary tube filled with a wetting liquid. Later works extended this seminal study to
the general case of viscous drops (Schwartz, Princen & Kiss 1986; Hodges, Jensen
& Rallison 2004). The recent development of digital microfluidic techniques has
motivated numerous works on the dynamics of viscous drops confined in Hele-Shaw
cells (Shen et al. 2014; Huerre et al. 2015; Ling et al. 2016; Yahashi, Kimoto &
Okumura 2016; Zhu & Gallaire 2016). A particular attention has been devoted to the
lubricating role of the films of liquid separating the drop from the walls of the cell.

Eri & Okumura (2011) investigated experimentally the settling of non-wetting drops
in a Hele-Shaw cell, in the limit where viscous dissipation inside the drop dominates
the resistance to the motion. Building up on these results, Yahashi et al. (2016) point
out the crucial effect of lubricating films between the drop and the walls, in the
regime of weakly confined drops. In the present paper, we explore experimentally and
theoretically the effect of strong confinement and viscosity ratio between the drop and
external liquids.

Drops of dense silicone oil sediment in a vertical Hele-Shaw cell filled with a
solution of surfactant of lower viscosity. Depending on the confinement and on
the contrast of viscosity, different flow regimes are observed as a function of the
ability of the solution to lubricate the displacement of the droplet. In the following
sections, we first present the experimental set-up and describe the evolution of the
sedimentation velocity as a function of the confinement and of the viscosity of the
droplets in the ideal case where the surrounding liquid perfectly wets the wall of the
cell. In the next section, we discuss these experimental data with different analytical
models accounting for a self-lubrication effect. We then illustrate the case of partial
wetting and demonstrate how the system may undergo a wetting transition with a
dramatic impact on the droplet dynamics. We finally conclude and point out possible
implications of our work for the study of the rheology of confined emulsions as
encountered in petroleum engineering.

2. Experiments

2.1. Experimental set-up
A Hele-Shaw cell made of two parallel glass slides separated by a gap of thickness
e ranging from 0.03 to 1 mm is filled with a surfactant solution and maintained
vertically (figure 1a). The solution is composed of 4.5 % by mass of a commercial
dishwashing soap (Paic Citron, from Colgate-Palmolive) in deionized water. This
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FIGURE 1. (Colour online) (a) Front and side views of the experimental set-up: a droplet
of fluorinated silicone oil of radius R is introduced into a Hele-Shaw cell of inner gap
e immersed in a bath of surfactant solution, and sediments under its apparent weight. A
thin layer of solution of thickness b separates the drop from the walls of the cell. (b)
Photograph representing the front view of a droplet (top of the picture) of radius R '
2.5 mm and of viscosity µo = 1500 mPa s, moving down in a cell of gap thickness e=
400 µm. This circular shape has been observed for all droplets, regardless of their velocity.
(c) Evolution of V as a function of the ratio R/e, for µo = 1500 mPa s and e= 400 µm.
For R/e> 5, V does not depend significantly on R/e. Inset: typical trajectory of a drop
exhibiting a steady velocity (for µo = 1500 mPa s and e= 400 µm).

concentration is large in comparison with the critical micellar concentration of the
soap (cmc' 0.05 % by mass, determined with the standard Wilhelmy plate method).
Such high concentrations should limit gradients in the local surfactant concentration
at the interface and thus tend to hinder Marangoni effects. All experiments are
conducted at room temperature (20 ◦C) for which the density and viscosity of the
surfactant solution are ρw = 997 kg m−3 and µw = 1 mPa s, respectively.
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A drop of fluorinated silicone oil (poly(3,3,3)-trifluoropropylmethylsiloxane, from
Gelest, Inc.) is inserted into the gap of the cell. The oil density ρo varies from
1220 to 1250 kg m−3 depending on the selected viscosity µo ranging from 180 to
18 000 mPa s. The presence of surfactant molecules ensures a non-wetting condition
for the oil droplet. In addition, while the interface between pure water and oil is
very sensitive to contamination, the large excess of surfactant molecules also imposes
a reproducible value of the interfacial tension. The radius R of the drop, typically
millimetric, is larger than 2e, so that the volume of these strongly confined puddles
is approximately Ω = πR2e. As the surfactant solution totally wets the cell walls,
a thin layer of solution of average thickness b separates the drop from the wall.
The water/oil interfacial tension γ is measured with the sessile drop method and is
between 5 and 6 mN m−1 depending on the oil viscosity. Under these conditions,
the denser oil drop settles down under gravity at a constant velocity V (see inset of
figure 1b). The sedimentation velocity weakly depends on the size of the drop. We
interpret the weak dependence of the velocity as a result of geometry. While droplets
adopt the shape of pancakes for high confinement, they tend to be spherical when
e > 2R. As a result, we do not observe any significant evolution for R/e > 5. All
experiments are thus conducted within this limit.

2.2. Sedimentation velocity
We represent in figure 2 the evolution of the settling velocity V of confined droplets
as a function of the gap e for various values of the oil viscosity µo. Regardless of
µo, V jumps by almost 5 orders of magnitude as e increases from 30 µm to 1 mm.

Interestingly, V appears very weakly dependent on µo for low values of e (e <
50 µm). In an intermediate regime 50 µm . e . 700 µm, V is a decreasing function
of µo. Finally, for e & 700 µm, the settling velocity becomes independent of the oil
viscosity. The overall dependence of the drop velocity on its viscosity (see figure 2)
is thus weaker than the simple inverse relationship that intuition might suggest. This
results is in strong contrast with the opposite case of droplets that totally wet the
walls (Reyssat 2014).

Different regimes are observed as a function of the confinement. Two trends are
obtained for the lowest gaps (e.500 µm). While the evolution of the settling velocity
seems to be approximately proportional to e for the highest viscosity, we observe a
variation with e2 for droplets of low viscosity. However, all data tend to collapse in
the same curve for larger gaps. The dependence with the gap then follows V ∝ e6,
which is particularly striking.

3. Lubrication model
The weak dependence of the velocity on the viscosity of the drops suggests that

viscous dissipation occurs not only in the drop but also in the thin films of solution
separating the droplet from the walls of the cell. The aim of the present section is to
identify the lubricating role of these films in the droplet dynamics.

3.1. General analytic expression for the drop velocity

We assume that a confined drop has the shape of a thick disc of volume Ω = πR2e,
since the film thickness b is much smaller than the gap e. The apparent weight of
this drop thus writes:

Fg =1ρgπR2e, (3.1)
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FIGURE 2. (Colour online) Evolution of the velocity of the confined drop V as a function
of the gap of the cell e. The blue squares, green triangles and red circles correspond
respectively to µo= 180 mPa s, µo= 1500 mPa s and µo= 18 000 mPa s. The dark green
diamonds correspond to drops of viscosity µo = 1500 mPa s moving with a moderate
gravity of magnitude g/2, obtained by inclining the cell to an angle of 30◦ with respect to
the horizontal. The straight lines represent the resolution of the implicit equation (3.19).

where 1ρ = (ρo − ρw) and g = 9.81 m s−2 is the gravitational acceleration. This
driving force is balanced by friction forces acting at the surface of the drop. However,
due to the large value of the viscosity ratio µo/µw, we disregard in the following
derivations the drag induced by bulk flows of surfactant solution around the drop.
We also neglect the friction in the peripheral menisci of surfactant solution around
the drop. Both assumptions are justified in Appendix A. Those negligible friction
forces may however become dominant in the dynamics of foams (Cantat 2013) or
confined bubbles (Reyssat 2014), where the viscosity ratio is conversely very small.
In our experiments, the remaining source of friction corresponds to viscous stresses
on the walls of the cell over the area 2πR2 covered by the drop. Since both the
driving force and the resistance are proportional to R2, the droplet velocity should be
independent of the size of the droplet as confirmed by the experiments. We expect
this force balance to be valid for large drops, typically within the limit R/e > 5 as
illustrated in figure 1. Smaller droplets are less confined by the wall, which changes
their dynamics (they tend to move faster than larger ones). The drops are separated
from the glass slides by a film of water whose average thickness b is set dynamically
by a balance between viscous and interfacial forces. As in the classic problem of a
bubble penetrating in a capillary tube, we expect b to be a function of the capillary
number Caw=µwV/γ , where µw is the viscosity of water, V the velocity of the drop
and γ the interfacial tension between the oil and the surfactant solution (Bretherton
1961). In our experiments, Caw varies between 10−7 and 10−2. However, in contrast
with air bubbles, the viscosity of the drop µo cannot be neglected when compared
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z

b

General case

(a) (b) (c)

FIGURE 3. (Colour online) (a) Velocity profile in a cross-section of a half-cell, for an
intermediate value of the ratio m=µwe/6µob. The origin of the y-coordinate is here taken
in the middle of the gap, where the z-component of the velocity is maximal. (b) Velocity
profile in the limit m� 1. The film of water plays no lubricating role and the droplet
undergoes a classical Poiseuille flow. (c) Velocity profile in the limit m� 1. The drop
moves as a solid plug and the film of water undergoes a Couette flow of shear rate V/b.

with µw. Indeed following Schwartz et al. (1986), b should also slightly depend on
the viscosity ratio µo/µw.

The velocity profile in a cross-section of the Hele-Shaw cell is sketched in
figure 3(a). We assume in the following derivations that the flow is directed along
the direction of the average velocity V and only varies across the section of the cell.
We neglect the two-dimensional component of the flow at the periphery of the drop,
as well as transversal flows linked to the formation of ‘catamaran’-like dimples in the
shape of the drops, as described by Huerre et al. (2015) and Zhu & Gallaire (2016).
We finally define as Vint the velocity at the interface, y = ±(e/2 − b), where y = 0
corresponds to the centre of the cell.

We now derive the flow profile across the channel. In the region |y|<(e/2− b), the
flow in the droplet follows a standard parabolic profile of average velocity V:

vdrop(y)=
3
2
(V − Vint)

[
1−

(
y

e/2− b

)2
]
+ Vint. (3.2)

In the complementary region e/2− b< |y|< e/2, the thin lubricating film undergoes
a simple shear flow with a no-slip boundary condition along the walls of the cell:

vfilm(y)= Vint
e

2b

(
2|y|

e
− 1
)
. (3.3)

At the oil–film interface (|y| = e/2− b), the continuity of the tangential viscous stress
in the drop and in the film imposes µo∂vdrop/∂y= µw∂vfilm/∂y. As b� e, this leads
to:

6µo
V − Vint

e
=µw

Vint

b
. (3.4)
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We finally obtain for the velocity at the interface:

Vint =
V

1+m
(3.5)

with m = µwe/6µob. The dimensionless parameter m, quantifies the slipping of the
drop with respect to the solid wall: while the limit m� 1 indicates very inefficient
lubrication (Vint = 0), m� 1 conversely corresponds to full slip (Vint = V).

The shear stress exerted by the film of water and the resisting the motion of the
drop is µwVint/b. Integrating this stress over the area 2πR2 on both sides of the drop
provides the friction force Ff = 2πR2µwVint/b acting on the drop. Inputting (3.5) leads
to:

Ff =
2πR2µwV
b(1+m)

. (3.6)

We finally deduce the droplet velocity from the balance of Ff with the apparent
weight:

V =
1ρg eb

2µw
(1+m) (3.7)

which may also be rewritten as:

V =
1ρg e2

12µo

(
1
m
+ 1
)
. (3.8)

We now describe the asymptotic limits corresponding to m � 1 and m � 1,
respectively.

3.2. Inefficient lubrication: m� 1
In the limit m� 1, the film does not play any significant role. Since b� e the flow
inside the droplet is described by a classical Poiseuille velocity profile:

v(y)=
3
2

V

(
1−

(
2y
e

)2
)
. (3.9)

Integrating the resulting viscous stress over the interface of the drop gives Ff =

12µoVπR2/e, which finally leads to the sedimentation velocity:

VPois =
1ρg
12µo

e2, (3.10)

which can also be directly obtained by considering m� 1 in (3.7) and (3.8). This
prediction describes very well the experimental data corresponding to the oil of the
lowest viscosity (µo = 180 mPa s) and small values of Caw, i.e. high confinement
(figure 2), with no adjustable parameters (see also the dimensionless figure 4).
However, velocities measured with oils of higher viscosity or cells of larger gaps
are higher than predicted in this asymptotic regime. In the following sections, we
describe how the surrounding fluid can enhance the mobility of the droplet.
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10010–110–2
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FIGURE 4. (Colour online) Dimensionless velocity Ṽ = V/VPois as a function of the
rescaled gap thickness e/`c, with `c the capillary length. The purple dashed line
corresponds to the Poiseuille regime characterized by Ṽ = 1. For most of the experimental
measurements, the rescaled velocity Ṽ is larger than unity, which enhances the lubricating
role of the films of water between the drop and the walls.

3.3. Full lubrication: m� 1
In the limit m� 1, the drop is simply translated as a solid block along the cell, while
the lubrication film undergoes a Couette flow of shear rate V/b. The resisting force
acting on the plug is thus given by:

Ff = 2πR2µwV
b
. (3.11)

However, the thickness b of the lubrication film should also depend on the dynamics.
In his seminal work, Bretherton (1961) describes the film left behind a bubble
moving in a capillary tube at velocity V . The thickness of the deposited film follows
a nonlinear law: b= 1.34 rCa2/3

w , where r is the radius of the tube and the capillary
number, Caw = µwV/γ , which compares (thickening) viscous stresses with (thinning)
surface tension. This law is in very good agreement with experimental results within
the range 10−5 .Caw . 10−2. At higher capillary numbers, the thickness of deposited
the film tends to saturate as it becomes comparable with the radius of the tube (Taylor
1961; Aussillous & Quéré 2000; Klaseboer, Gupta & Manica 2014). In the opposite
limit of low Caw, repulsive intermolecular interactions become dominant when the
thickness of the film falls under a few hundreds of nanometres (Israelachvili 2011).
Disjoining pressure may then stabilize nanometric films (Bergeron & Radke 1992)
and lead to a saturation of the coating thickness to a value bΠ of the order of tens
of nanometres, as first proposed by a referee of Bretherton’s paper (Bretherton 1961).
This effect was later modelled by Teletzke, Davis & Scriven (1988) and Chaudhury,
Acharya & Chakraborty (2014) and directly observed in a recent study by Huerre
et al. (2015).
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The work of Bretherton (1961) has also been extended to the motion of non-wetting
viscous drops, which is relevant to our situation. Schwartz et al. (1986), Hodges
et al. (2004) and more recently Balestra, Zhu & Gallaire (2017) have shown
both theoretically and numerically that Bretherton’s law should be corrected by a
multiplying prefactor P depending of the ratio µo/µw. Indeed, the finite viscosity
of the drop amplifies viscous stresses and results in thicker films. In the range of
experimental parameters corresponding to our experiment, P should be close to 22/3,
which corresponds to the asymptotic value for very viscous drops (µo/µw→∞), also
derived by Bretherton.

Although the two-dimensional geometry of the present problem is more complex
than for the axisymmetric case of capillary tubes (Burgess & Foster 1990; Reichert
et al. 2018), we propose to extrapolate Bretherton’s law to the case of droplets
confined in a Hele-Shaw cell, as properly derived by Park & Homsy (1984). The gap
of the cell e then replaces the radius r of the capillary tube. However, the moving
contact line is not perpendicular to the velocity, except at the apex of the drop. As
a consequence, the film separating the drop of oil from the wall is not rigorously
uniform, as shown experimentally by Huerre et al. (2015). However, we assume in
the following that the average thickness of the lubricating layer is set by a relation
of the form:

bBr = αeCa2/3
w , (3.12)

where α is a numerical factor of the order of unity.
Nevertheless, we expect such a law to fail for low values of Caw. In this limit, we

assume b to be equal to a value bΠ dictated by the disjoining pressure in the film
(Teletzke et al. 1988; Chaudhury et al. 2014). The actual value of bΠ depends on the
type of interactions involved in the disjoining pressure ΠD. In the case of ideal van
der Waals forces, we expect the pressure in the film to be ΠD =−A/6πb3

Π , where A
is the Hamaker constant (Israelachvili 2011). Balancing this pressure with the Laplace
pressure 2γ /e thus leads to:

bΠ =
(
−A e
12π γ

)1/3

. (3.13)

Considering A∼−10−20 J, γ ∼ 5× 10−3 mN m and e∼ 50 µm, we obtain a typical
estimate of bΠ ∼ 10 nm. Nevertheless, molecular interactions are not limited to van
der Waals forces. Other terms such as electrostatic repulsion may also play a role in
the disjoining pressure and lead to other expressions for the film thickness. However,
we expect the order of magnitude of bΠ to remain of the order of a few tens on
nanometres. Studying in detail the evolution of such thin films is beyond the scope
of the current work. As detailed below, our experiment nevertheless constitutes a way
to probe such thin films. We hope our study will motivate future investigations.

In the following sections we describe the regimes corresponding to both the
Bretherton and van der Waals limits.

3.3.1. Bretherton film limit: b> bΠ (self-lubrication)
Inputting Bretherton’s law in (3.11) provides the friction force acting on the drop:

Ff =
µ1/3

w γ 2/3V1/3

αe
2πR2. (3.14)
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Interestingly, the friction force is a sub-linear function of the velocity, as discussed in
more details at the end of the paper. Balancing this force with gravity, we obtain:

V =
α3

8
(1ρg)3

µwγ 2
e6. (3.15)

As mentioned earlier, α should be independent of the viscosity ratio, since µo/µw >
100 in our experiments (Schwartz et al. 1986; Hodges et al. 2004; Balestra et al.
2017). Within this limit, V should almost be independent of µo and be proportional
to e6 as observed experimentally (figure 4). Fitting the experimental data with (3.15)
provides an estimate of the numerical prefactor α = 0.7 ± 0.05. This regime is very
similar to the self-lubrication behaviour observed in self-propelled droplets in capillary
tubes (Bico & Quéré 2002) and in sedimenting droplets in Hele-Shaw cells (Yahashi
et al. 2016).

Rescaling (3.15) by the velocity VPois (3.10), we obtain the dimensionless velocity
Ṽ:

Ṽ =
3α3

2
µo

µw

(
e
lc

)4

. (3.16)

This dependence of the rescaled velocity Ṽ on (e/`c)
4 may be observed in the

dimensionless graph in figure 4.

3.3.2. Van der Waals film limit: low Caw

In this regime, b= bΠ , which leads to a friction force Ff = 2πR2µwV/bΠ . We thus
expect the settling velocity of the droplet to be:

V =
1ρ g bΠ

2µw
e=

1ρ g
2µw

(
−Ae4

12πγ

)1/3

. (3.17)

As in the previous regime, the velocity is independent of µo, but is now proportional
to e4/3. Experimental data are in fair agreement with this prediction for strongly
confined drops (e < 200 µm) of the highest viscosity, as illustrated in figure 2.
Adjusting (3.17) leads to an estimation of the Hamaker constant A ' −2 × 10−20 J.
This evaluation of A corresponds to thicknesses bΠ ranging from 10 to 30 nm
depending on the confinement, which is comparable to the values reported by
Huerre et al. (2015). Rescaling (3.17) by the velocity VPois (3.10), we obtain the
dimensionless velocity Ṽ for the van der Waals limit:

Ṽ =
(

18
π

)1/3
µo

µw

(
−A
γ e2

)1/3

. (3.18)

3.4. Configuration diagram
The three regimes described in the previous section correspond to different asymptotic
solutions of the equation:

V =
1ρge

2

(
e

6µo
+

max(bΠ ; bBr)

µw

)
, (3.19)

where bBr and bΠ are respectively defined by (3.12) and (3.13). We arbitrarily
assume that b = max(bΠ ; bBr). Although the transition between both film regimes is
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actually smoother, we found this simple interpolation to be in good agreement with
experiments. The implicit (3.19) can be solved numerically and captures correctly the
experimental data obtained for different values of viscosity ratio and effective gravity,
as represented in figure 2.

Using (3.10), equation 3.19 may be rewritten in a dimensionless implicit form:

Ṽ = 1+ 6
µo

µw
max

((
−A

12πγ e2

)1/3

;
α

122/3

(
µw

µo

)2/3 ( e
`c

)4/3

Ṽ2/3

)
. (3.20)

In figure 4 we plot the dimensionless velocity Ṽ as a function of confinement e
normalized by the capillary length `c. The lubricating properties appear clearly here,
as Ṽ > 1 for all data points. The drops of the most viscous oils (µ= 18 000 mPa s)
are always fully lubricated, either by a Bretherton film (Ṽ ∝ e4) or by a van der
Waals film (Ṽ ∝ e−2/3). Less viscous oils benefit less from the lubricating properties
of water films. In particular, for oils less viscous than approximately 200 mPa s, the
regime dominated by dissipation in the drop is clearly observed (Ṽ = 1, blue squares
in figure 4).

Describing the problem in terms of a configuration diagram may be useful to gain
a global view of the different regimes. For a given oil viscosity, two or three regimes
may be observed as the gap is increased. For very high confinement, the thin film of
water acts as a lubricant and the settling velocity is proportional to e4/3 in the case of
an ideal van der Waals film, as defined in (3.17). In the opposite limit, self-lubrication
plays a leading role and yields V proportional to e6 as described by (3.15). Between
these regimes, the effect of the film may be negligible and the droplet undergoes a
classical Poiseuille flow with a velocity varying with e2 (3.10). We define as e4/3→2
and e2→6 the characteristic gaps at the transitions from the regimes V ∝ e4/3 to V ∝ e2

and V ∝ e2 to V ∝ e6, respectively. Both characteristic gaps are readily deduced by
equating the corresponding velocities:

e4/3→2

`c
=

(
µo

µw

)3/2 (
−18
π

A
γ `2

c

)1/2

(3.21)

and
e2→6

`c
=

(
2

3α3

µw

µo

)1/4

, (3.22)

where `c= (γ /1ρg)1/2 is defined as the capillary length, whose value is generally of
the order of 1 mm (in our particular system, `c ' 1.5 mm).

However a direct transition from the regime V ∝ e4/3 to V ∝ e6 can also be observed
if e4/3→2 > e2→6. This transition is characterized by the following gap:

e4/3→6

`c
=

(
−16
3πα9

A
γ `2

c

)1/14

. (3.23)

This direct transition is only observed for the highest viscosity ratios:

µo

µw
>

(
π2

486α3

γ 2 `4
c

A2

)1/7

. (3.24)
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18 000 mPa s 

180 mPa s 

1500 mPa s 

102

103

104

105

10010–110–2

FIGURE 5. (Colour online) Configuration diagram describing the different asymptotic
regimes as a function of the gap of the cell and of the viscosity ratio. The range
of parameters explored in our experiments are represented with the horizontal lines
corresponding to the different oil viscosities. Depending on the viscosity ratio, one or two
transitions can be observed. The frontiers between each regime are represented by coloured
lines. Blue, green and red lines correspond respectively to (3.21), (3.22) and (3.23). In
each domain, the asymptotic expression of the velocity V corresponds to the scaling of
(3.17) (cyan domain), (3.15) (yellow domain) and (3.10) (magenta domain). The scaling
of the rescaled expression Ṽ =V/VPois is written in brown, and correspond respectively to
(3.18), (3.16) and by definition Ṽ = 1.

In our system, the numerical value of the right-hand side of (3.24) is of the order of
1650, which is in fair agreement with our experimental observations. Indeed we can
clearly define two regimes (V ∝ e2 and V ∝ e6) for µo= 180 mPa s, and two regimes
(V ∝ e4/3 and V ∝ e6) for µo = 18 000 mPa s. However, the two low-velocity regimes
V ∝ e4/3 and V ∝ e2 seem transitional in the intermediate case µo = 1500 mPa s
(figure 2). We present in figure 5, the configuration diagram corresponding to these
different transitions. In the case of a high contrast of viscosity, the deposited film plays
the role of a lubricant, which leads to settling velocities proportional to e and e6 for
respectively strong and weak confinement. Conversely, dissipation is concentrated in
the bulk of the droplet when the contrast in viscosity is modest, which results in a
velocity proportional to e2.

4. Partially wetting drops: lubrication film properties recovered through a wetting
transition

In contrast with the ideal complete wetting situation described so far, practical
configurations commonly involve partial wetting. In such cases, we do not expect to
obtain any lubricating film below a certain value of Caw (Marchand et al. 2012),
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2

6

10–4

10–5

10–6

10–7

10–3

10–2

1 2 3 4

e (m)

FIGURE 6. (Colour online) Settling velocity V as a function of the gap of the cell e for
partially wetting drops of oil in a cell filled with ethanol. Blue squares, green triangles
and red circles correspond respectively to µo = 180 mPa s, µo = 1500 mPa s and µo =

18 000 mPa s. We interpret the important jump observed beyond a critical gap to be a
consequence of a wetting transition. The dotted lines correspond to the ‘Poiseuille regime’
(3.10) and the solid lines correspond to the ‘self-lubricated’ regime with a Bretherton film
((3.15), with α = 0.7).

which should strongly affect the droplet dynamics. We performed a series of
experiments where the solution of surfactant is replaced by ethanol. In this system,
ethanol partially wets the walls of the cell with a receding contact angle of the order
of 30◦. The viscosity of ethanol is µw = 1.2 mPa s at 20 ◦C.

In figure 6, we plot V as a function of e for drops of oil of respective viscosities
µo= 180, 1500 and 18 000 mPa s. At the lowest values of e (most confined cells), V
tends to follow the regime described by (3.10) (dashed lines), which corresponds to
a Poiseuille flow without any lubrication. In contrast with the previous experiments
conducted with a wetting solution, this regime is obtained with oils of all viscosities,
which confirms the absence of a lubricating film. As the thickness of the cell is
increased, we observe a jump in the velocity for a critical thickness. This jump is
particularly dramatic for the most viscous oils: the velocity increases by two orders
of magnitude for the oil of viscosity 18 000 mPa s. Beyond this critical thickness, the
settling velocity follows the self-lubrication regime described by (3.15). We interpret
the jump as the consequence of a wetting transition: a lubricating film is deposited
as Caw reaches a critical value. This critical velocity has been discussed in simpler
geometries for a variety of viscosity contrasts (Eggers 2001; Lorenceau, Restagno &
Quéré 2003; Snoeijer et al. 2006; Marchand et al. 2012). In the present case, the
deposited fluid is much less viscous than the oil in the drops, which is reminiscent
from the air entrainment problem. In this limit, Eggers and Lorenceau et al. found
that the critical velocity for entrainment depends logarithmically on the viscosity
ratio, while Marchand et al. rather suggest a stronger power-law dependence on the
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viscosity of air. However, in our experiments the component of the velocity normal
to the contact line varies along the boundary of the drop (Burgess & Foster 1990).
This component decreases from the front to the sides of the drop, which should delay
or smooth the transition. We also observe an important scattering of the experimental
data due to a high sensitivity to local imperfections. As a general trend, smaller
drops tend to undergo the transition for lower gaps than larger drops. Following the
steps of the recent works of Hammoud et al. (2017) and Zhao et al. (2018), a better
characterization of this transition may be achieved in the axisymmetric geometry of
a capillary tube.

5. Conclusion

Our experimental study describes the sedimentation velocity of a droplet of viscous
oil in a Hele-Shaw cell filled with a less viscous solution (µo/µw� 10). Depending
on the confinement and on the wetting properties of the solution, different regimes
are observed. In particular, we demonstrated a possible self-lubrication effect of the
droplet by the solution, which dramatically amplifies the sedimentation mobility. In the
absence of lubrication, the sedimentation velocity scales as 1ρge2/µo. However, self-
lubrication leads to a velocity proportional to e6 in the case of low confinement and to
a velocity proportional to e4/3 for high confinements (in the case of a wetting solution).
Although we mainly focused on the case of a perfectly wetting carrying liquid, we
observe a stiff signature of a wetting transition in the case of partial wetting.

This work may also provide some insight into the rheology of dense emulsions in
confined environments. Such a situation is indeed common in petroleum engineering
when the size of the oil droplets is of the same scale as the pores of the reservoirs.
By analogy with standard rheological data, we can define an effective viscosity
µeff ∼1ρge2/V and express it as a function of the apparent shear rate V/e. The three
different regimes presented in figure 5 correspond to the following expressions:

(i) lubrication through the thin van der Waals film: µeff ∼µwe/bΠ ∼µw(γ e2/− A)1/3;
(ii) absence of lubrication: µeff =µo;

(iii) lubrication through the Bretherton film: µeff ∼ (µwγ
2e2)1/3(V/e)−2/3.

If the apparent shear rate could be increased as a control parameter, the confined
emulsion would thus appear as a shear thinning fluid. The effective viscosity is
constant at low shear rate and displays a power-law behaviour with an exponent
−2/3 for high shear rates. Such a behaviour is reminiscent of classical works on
the rheology of foams and concentrated emulsions, although dissipation in Plateau
borders tends to lead to a lower exponent (Princen & Kiss 1989; Denkov et al. 2008;
Cantat 2013; Cohen-Addad & Höhler 2014).

In our model, we assumed the lubricating film to be uniform in order to simplify
the description of the system„ which is not rigorous, as demonstrated experimentally
by Huerre et al. (2015). Nevertheless, we hope that our work will motivate further
investigations where the thickness profile and, more generally, the impact of the two-
dimensional geometry of the droplet will be taken into account.

Finally, our experiments demonstrate the critical role of the lubricating film of water
in the dynamics of highly viscous drops. As a perspective, it might be expected that
any variation of the thickness of that film, induced by e.g. rough (Seiwert, Clanet &
Quéré 2011) or slippery (Li et al. 2014) walls, could hinder the self-lubrication regime
(3.15) and thus dramatically modify the mobility of the drops.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

24
0

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 E

co
le

 P
ol

yt
ec

hn
iq

ue
 F

éd
ér

al
e 

de
 L

au
sa

nn
e 

(E
PF

L)
, o

n 
03

 M
ay

 2
01

8 
at

 0
9:

34
:3

3,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

https://doi.org/10.1017/jfm.2018.240
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Non-wetting drops in a Hele-Shaw cell 259

100
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10–2

10–3

10–310–4

100
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10–2

10–3

10–310–4

(a)

(b)

FIGURE 7. (Colour online) (a) Ratio of the viscous force from the bulk of the surrounding
liquid to the force exerted by the lubrication film as a function of e. Blue squares
correspond to µo = 180 mPa s, green triangles to µo = 1500 mPa s and red circles to
µo= 18 000 mPa s. The ratio roughly corresponds to 6b(1+m)/e, and its value is smaller
than 0.2 for all the experiments, so that the contribution of the surrounding liquid is
negligible. (b) Ratio of the viscous force in the menisci at the periphery of the drop to
the force from the lubrication film as a function of e. Fmenis

w /Ff ' 3b(1 + m)Ca−1/3
w /R,

is smaller than 0.2 for all the experiments and the contribution of the menisci may be
neglected.
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Appendix A
We here justify our choice to neglect the resisting contribution of the flow of water

in the front and rear menisci as well as in the bulk around the drop.

A.1. Dissipation in the bulk of water surrounding the drop
The resisting force resulting from the flow of water around the drop scales as
Fbulk

w =12πµwVR2/e which has to be compared to the friction force Ff =2πR2µwVint/b,
exerted by the walls on the drop. Using (3.5), we obtain: Fbulk

w /Ff = 6b(1 + m)/e.
As plotted in figure 7(a), this ratio is at most 2 × 10−1 within the range of our
experimental parameters. The contribution of viscous dissipation in the bulk of the
surrounding water to the overall friction force can thus be neglected.

A.2. Dissipation in the front and rear menisci
Following recent work on the motion of wetting droplets in Hele-Shaw cells (Reyssat
2014) or on the dissipation involved in the displacement or deformation of foams
(Cantat 2013; Sauret et al. 2015; Viola et al. 2016), we expect the friction force
resulting from the flow in the advancing and receding menisci of water around
the drop to follow Fmenis

w ' 20γRCa2/3
w . Comparing (3.6) with this force yields:

Fmenis
w /Ff ' 3b(1+m)Ca−1/3

w /R. As plotted in figure 7(b), this ratio is of the order of
0.2 for the largest gaps, but lower than 0.1 for more confined drops, which justifies
that the contribution of the menisci may be neglected in the overall estimation of the
friction.

A.3. Inertial resistance of water
The inertial resistance of the displaced water also hinders the motion of the drop and
scales as Fi ∼ ρwV2Re. The comparison of inertia to the friction force acting on the
surface of water written in (3.6) leads to Fi/Ff = ρwVbe(1+ m)/µwR, which can be
viewed as the relevant Reynolds number. For our experiments, this Reynolds number
remains smaller than 1 as long as e<1 mm, which justifies neglecting the contribution
of inertia in the fluid surrounding the drop in the overall drag force. For e> 1 mm
the drop velocity is observed to saturate as inertial resistance starts to dominate.
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